CHAPTER II
THE MULTIPLICITY OF CONSCIOUS STATES1
THE IDEA OF DURATION
What is number?
Number maybe defined in general as a collection of units, or, speaking more exactly, as the synthesis of the one and the many. Every number is one, since it is brought before the mind by a simple intuition and is given a name; but the unity which attaches to it is that of a sum, it covers a multiplicity of parts which can be considered separately. Without attempting for the present any thorough examination of these conceptions of unity and multiplicity, let us inquire whether the idea of number does not imply the representation of something else as well.
The units which make up a number must be identical.
It is not enough to say that number is a collection of units; we must add that these units are identical with one another, or at least that they are assumed to be identical when they are counted. No doubt we can count the sheep in a flock and say that there are fifty, although they are all different from one another and are easily recognized by the shepherd: but the reason is that we agree in that case to neglect their individual differences and to take into account only what they have in common. On the other hand, as soon as we fix our attention on the particular features of objects or individuals, we can of course make an enumeration of them, but not a total. We place ourselves at these two very different points of view when we count the soldiers in a battalion and when we call the roll. Hence we may conclude that the idea of number implies the simple intuition of a multiplicity of parts or units, which are absolutely alike.
But they must also be distinct.
And yet they must be somehow distinct from one another, since otherwise they would merge into a single unit. Let us assume that all the sheep in the flock are identical; they differ at least by the position which they occupy in space, otherwise they would not form a flock. But now let us even set aside the fifty sheep themselves and retain only the idea of them. Either we include them all in the same image, and it follows as a necessary consequence that we place them side by side in an ideal space, or else we repeat fifty times in succession the image of a single one, and in that case it does seem, indeed, that the series lies in duration rather than in space. But we shall soon find out that it cannot be so. For if we picture to ourselves each of the sheep in the flock in succession and separately, we shall never have to do with more than a single sheep. In order that the number should go on increasing in proportion as we advance, we must retain the successive images and set them alongside each of the new units which we picture to ourselves: now, it is in space that such a juxtaposition takes place and not in pure duration. In fact, it will be easily granted that counting material objects means thinking all these objects together, thereby leaving them in space. But does this intuition of space accompany every idea of number, even of an abstract number?
We can not form an image or idea of number without the accompanying intui