: Mark M. Meerschaert, Alla Sikorskii
: Stochastic Models for Fractional Calculus
: Walter de Gruyter GmbH& Co.KG
: 9783110258165
: De Gruyter Studies in MathematicsISSN
: 1
: CHF 126.90
:
: Wahrscheinlichkeitstheorie, Stochastik, Mathematische Statistik
: English
: 301
: Wasserzeichen/DRM
: PC/MAC/eReader/Tablet
: PDF
< >This monograph develops the basic theory of fractional calculus and anomalous diffusion, from the point of view of probability. The reader will see how fractional calculus and anomalous diffusion can be understood at a deep and intuitive level, using ideas from probability. The book covers basic limit theorems for random variables and random vectors with heavy tails. Heavy tails are applied in finance, insurance, physics, geophysics, cell biology, ecology, medicine, and computer engineering.


< >Mark M. Meerschaert andAlla Sikorskii, Michigan State University, East Lansing, Michigan, USA.

Preface6
Contents10
Acknowledgments8
1 Introduction12
1.1 The traditional diffusion model13
1.2 Fractional diffusion21
2 Fractional Derivatives32
2.1 The Grünwald formula32
2.2 More fractional derivatives40
2.3 The Caputo derivative45
2.4 Time-fractional diffusion53
3 Stable Limit Distributions60
3.1 Infinitely divisible laws60
3.2 Stable characteristic functions66
3.3 Semigroups70
3.4 Poisson approximation77
3.5 Shifted Poisson approximation80
3.6 Triangular arrays83
3.7 One-sided stable limits88
3.8 Two-sided stable limits92
4 Continuous Time Random Walks98
4.1 Regular variation98
4.2 Stable Central Limit Theorem105
4.3 Continuous time random walks110
4.4 Convergence in Skorokhod space114
4.5 CTRW governing equations117
5 Computations in R128
5.1 R codes for fractional diffusion128
5.2 Sample path simulations137
6 Vector Fractional Diffusion154
6.1 Vector random walks154
6.2 Vector random walks with heavy tails164
6.3 Triangular arrays of random vectors169
6.4 Stable random vectors176
6.5 Vector fractional diffusion equation181
6.6 Operator stable laws188
6.7 Operator regular variation197
6.8 Generalized domains of attraction202
7 Applications and Extensions214
7.1 LePage Series Representation214
7.2 Tempered stable laws218
7.3 Tempered fractional derivatives224
7.4 Pearson Diffusions228
7.5 Fractional Pearson diffusions244
7.6 Fractional Brownian motion252
7.7 Fractional random fields262
7.8 Applications of fractional diffusion268
7.9 Applications of vector fractional diffusion281
Bibliography290
Index300