: Apostolos Papanikolaou
: A Holistic Approach to Ship Design Volume 1: Optimisation of Ship Design and Operation for Life Cycle
: Springer-Verlag
: 9783030028107
: 1
: CHF 169.10
:
: Maschinenbau, Fertigungstechnik
: English
: 501
: Wasserzeichen/DRM
: PC/MAC/eReader/Tablet
: PDF
This book introduces a holistic approach to ship design and its optimisation for life-cycle operation. It deals with the scientific background of the adopted approach and the associated synthesis model, which follows modern computer aided engineering (CAE) procedures. It integrates techno-economic databases, calculation and multi-objective optimisation modules and s/w tools with a well-established Computer-Aided Design (CAD) platform, along with a Virtual Vessel Framework (VVF), which will allow virtual testing before the building phase of a new vessel. The resulting graphic user interface (GUI) and information exchange systems enable the exploration of the huge design space to a much larger extent and in less time than is currently possible, thus leading to new insights and promising new design alternatives. The book not only covers the various stages of the design of the main ship system, but also addresses relevant major onboard systems/components in terms of life-cycle performance to offer readers a better understanding of suitable outfitting details, which is a key aspect when it comes the outfitting-intensive products of international shipyards. The book disseminates results of the EU funded Horizon 2020 project HOLISHIP.
Preface5
Contents9
Editor and Contributors11
Abbreviations15
1 Introduction to the HOLISHIP Project21
1.1 Historical Review21
1.2 The HOLISHIP Project24
References27
2 Holistic Ship Design Optimisation29
2.1 Introduction to Holistic Ship Design Optimisation30
2.2 The Evolution of the Holistic Approach to Ship Design33
2.3 The Generic Ship Design Optimisation Problem35
2.4 Optimisation of Tanker Design37
2.4.1 Multi-objective AFRAMAX Tanker Design38
2.4.2 The Design Approach41
2.4.3 Tank Arrangement43
2.4.4 Structural Model44
2.4.5 Analyses and Simulations46
2.5 Discussion of Results49
2.5.1 Exploration49
2.5.2 Refinements51
2.5.3 Sensitivities52
2.5.4 The RFR-OOI Sensitivity Study54
2.6 Conclusions55
References56
3 On the History of Ship Design for the Life Cycle63
3.1 Introduction64
3.2 Ship Design Decision Models65
3.2.1 Ship Design as Optimization65
3.2.2 The Stagewise Structure of the Ship Design Process65
3.2.3 The Generic Ship Design Model67
3.3 Specific Cases of Ship Design Optimization Studies68
3.3.1 Generations of Ship Design Models68
3.3.2 Synthesis Models70
3.3.3 Multiobjective Models72
3.3.4 Holistic Design Models78
3.3.5 Risk-Based Design Models85
3.4 Conclusions89
References91
4 Market Conditions, Mission Requirements and Operational Profiles94
4.1 Introduction95
4.1.1 RoPAX96
4.1.2 Double-Ended Ferry97
4.1.3 Offshore Support Vessel98
4.2 Market Analysis of the RoPAX Vessel Segment99
4.2.1 Introduction99
4.2.2 The RoPAX Vessel Segment100
4.2.3 The Double-Ended Ferries Market Segment103
4.2.4 Conclusions for the Future Development in the RoPAX Vessel Segment (Including DE Ferries)104
4.3 Mission Requirement106
4.3.1 Transport Task106
4.3.2 Defining the Vessel107
4.4 Initial Sizing107
4.4.1 Definition of Concept Design108
4.4.2 Regression Analysis108
4.4.3 Other Stakeholders and Their Impact110
4.5 Operational Profiles111
4.5.1 Other Stakeholders and Their Impact111
4.5.2 Operational Profiling Tool—Input112
4.5.3 Operational Profiling Tool—Simulation113
4.5.4 Operational Profiling Tool—Results: RoPAX Application Case115
4.5.5 Operational Profiling Tool—Results: DE Ferry Application Case117
4.5.6 Operational Profiling Tool—Results: OSV Application Case122
4.5.7 Operational Profiling Tool—Discussion130
4.6 Designing a Ship Concept for a Given Task by the Use of the Intelligent GA130
4.6.1 Design Tool Requirements131
4.6.2 3D General Arrangement in Concept Phase of Design132
4.6.3 Intelligent GA Tool133
4.6.4 Internal Modules135
4.6.5 Linked Modules137
4.6.6 Optimisation Platform Integration138
References139
5 Systemic Approach to Ship Design141
5.1 Ship Design Driven by Operational Scenarios142
5.1.1 Operational Scenarios as a Complement to Technical Requirements142
5.1.2 Technical Requirements142
5.1.3 Inferring Operational Scenarios from Requirements144
5.2 Modelling the System Architecture of the Ship145
5.2.1 A Multi-level Architecture Model145
5.2.2 Architecture Analysis—Circuits and Networks, Functional Chains147
5.2.3 System Architecture as the Basis for Performance and RAM Analysis148
5.3 Managing the Design Process with “Communities of Interest”149
5.3.1 Ship Design: A Collaborative Design Process149
5.3.2 Collaborative Software Architectures151
5.3.3 Architecture of the SAR Tool152
5.3.4 A Human-Centred Design Process153
References155
6 Hydrodynamic Tools in Ship Design157
6.1 Hydrodynamic Challenges in Ship Design158
6.1.1 Ship Resistance159
6.1.2 Propulsion166
6.1.3 Seakeeping168
6.1.4 Manoeuvring169
6.2 Different Types of Hydrodynamic Tools171
6.2.1 Fundamental Considerations172
6.2.2 Empirical Tools174
6.2.3 Potential Flow Codes175
6.2.4 Viscous Flow Codes185
6.3 Simulation-Based Design Optimisation and Adaptive Multi-fidelity Metamodelling196