: Paul Zelisko
: Bio-Inspired Silicon-Based Materials
: Springer-Verlag
: 9789401794398
: 1
: CHF 89.50
:
: Anorganische Chemie
: English
: 132
: Wasserzeichen/DRM
: PC/MAC/eReader/Tablet
: PDF

The contributed volume addresses a wide range of topics including, but not limited to, biotechnology, synthetic chemistry, polymer chemistry and materials chemistry. The book will serve as a specialized review of the field of biologically inspired silicon-based structures. Researchers studying biologically inspired silicon materials chemistry will find this volume invaluable.

Contents6
Contributors8
Chapter-110
Silicon in a Biological Environment10
1.1 Silicon-Based Life: Science-Fiction?10
1.2 Not Science Fiction After All: Plants, Diatoms, and Sponges11
1.2.1 Plants11
1.2.2 Marine Organisms12
1.2.2.1 Diatoms12
1.2.2.2 Sponges13
1.3 Drawing Inspiration from Nature15
1.3.1 Applications in Agriculture15
1.3.2 Silicon in Human Health and Medicine15
1.3.2.1 Silicon in Food and in the Human Body16
1.3.2.2 Silicon in Medicine19
1.3.2.2.1 Silicon-Containing Molecules with Medicinal Applications19
1.3.2.2.2 Biomedical Devices Based on Silicon21
References24
Chapter-228
The Role of Silicates in the Synthesis of Sugars Under Prebiotic Conditions28
2.1Sugars and Life28
2.2The Formose Reaction28
2.3The Interaction(s) of Carbohydrates with Silicates30
2.4Summary33
References34
Chapter-335
Protease-Mediated Hydrolysis and Condensation of Tetra- and Trialkoxysilanes35
3.1Introduction35
3.1.1Biosilica Synthesis35
3.2Enzyme-Mediated Hydrolysis and Condensation of Alkoxysilanes37
3.3Hydrolysis and Condensation of Organically Modified Alkoxysilanes39
3.4Active Site Considerations41
3.5Conclusions43
References44
Chapter-446
Bioinspired Silica for Enzyme Immobilisation: A Comparison with Traditional Methods46
4.1 Introduction to Enzymes46
4.2 Enzyme Immobilisation Overview47
4.2.1 Outline of Enzyme Immobilisation Techniques49
4.2.2 Supports49
4.3 Immobilisation Techniques51
4.3.1 Evaluation and Comparison of Biocatalyst Performance51
4.3.2 Lipase52
4.3.3 Covalent Binding53
4.3.4 Adsorption55
4.3.5 Cross-Linking57
4.3.6 Entrapment/Encapsulation58
4.4 Bioinspired Silica for Enzyme Immobilisation62
4.5 Conclusion65
4.6 Acknowledgments65
References66
Chapter-570
On The Immobilization of Candida antarctica Lipase B onto Surface Modified Porous Silica Gel Particles70
5.1 Introduction70
5.2 Experimental72
5.2.1 Materials72
5.2.2 Enzyme Immobilization Protocol73
5.2.3 Enzyme Activity Assay73
5.2.4 Instrumental Methods74
5.2.5 Results and Discussion74
5.2.6 CALB Immobilization on Surface Modified Porous Silica Gel Particles74
5.2.7 Thermal Stability of the Immobilized CALB74
5.2.8 Support Material Swelling77
5.2.9 Conclusions78
References78
Chapter-680
Enzymatic Modification and Polymerization of Siloxane-Containing Materials80
6.1 Introduction80
6.2 Enzyme-Mediated Catalysis of Siloxane-Containing Materials81
6.3 Structural Characterization of Siloxane-Containing Polyesters82
6.4 Elongation Kinetics84
6.4.1 CPr-TMDS and 3HP-TMDS84
6.4.2 CPr-TMDS and HA-PDMS85
6.4.3 A Comparsion of Acyl-Donors86
6.5 Thermal Properties of Disiloxane Containing Polyesters88
6.6 A Comparison of the Activation Energy for N435-Mediated Polyesterification Reactions88
6.7 Residual Activity of Novozyme-43589
6.8 Thermal Tolerance and Repeated Use of Novozyme-43590
6.9 Enzymatic Deacylation of 1,3-Bis(3-Acetoxypropyl)-1,1,3,3-Tetramethyldisiloxane92
6.10 Conclusions93
References95
Chapter-797
Design and Thermal Properties of Interpenetrating and Intercrosslinked Biosilicate Materials97
7.1 Introduction97
7.2 Biohybrid Materials99
7.3 Biohybrid Material Thermal Properties103
7.4 Conclusions107
References107
Chapter-8109
Bioactive Amino Acids, Peptides and Peptidomimetics Containing Silicon109
8.1 Silicon in Amino Acids and Peptides109
8.2 Where Silicon Can—and Cannot—be Used109
8.3 Silicon Containing Amino Acids [2]111
8.3.1 The ?-Silyl Amino Acids111
8.3.2 The ?-Silyl Amino Acids112
8.4 Silanediol Protease Inhibitors115
8.4.1 Design and Activity115
8.4.2 Silanediol Synthesis117
8.4.3 An HIV Protease Inhibitor118
8.4.4 Thermolysin Inhibitor119
8.4.5 Angiotension-Converting Enzyme Inhibitors120
8.5 Improved Chemistries for Silanediol Inhibitor Construction122
8.5.1 ?-Alkyl-?-Silyl Acids122
8.5.1.1 Asymmetric Hydroboration of 2,5-Dihydrosiloles122
8.5.1.2 Asymmetric Intramolecular Hydrosilylation123
8.5.2 ?-Alkyl-?-Amino Silanes124
8.5.2.1 Asymmetric Reduction of a Silyl Ketone124
8.5.2.2 Asymmetric Reverse-aza-Brook Rearrangment125
8.5.2.3 Silyllithium Addition to Sulfinimines125
8.6 Future Prospects126
References127
Index130